dc.contributor.author |
Katsikadelis, JT |
en |
dc.contributor.author |
Kandilas, CB |
en |
dc.date.accessioned |
2014-03-01T01:07:45Z |
|
dc.date.available |
2014-03-01T01:07:45Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0001-5970 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10148 |
|
dc.subject |
Boundary Element Method |
en |
dc.subject |
Dynamic Analysis |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Dynamics--Analysis |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Mathematical Techniques--Boundary Element Method |
en |
dc.subject.other |
Flexibility Matrix |
en |
dc.subject.other |
Mass Matrix |
en |
dc.subject.other |
Thin Elastic Plates |
en |
dc.subject.other |
Plates |
en |
dc.title |
A flexibility matrix solution of the vibration problem of plates based on the boundary element method |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01174732 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01174732 |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
A Boundary element method (BEM) is developed for the dynamic analysis of thin elastic plates. The method is based on the capability to establish a flexibility matrix (discrete Green's function) with respect to a set of nodal mass points using a BEM solution for the static plate problem. A lumped mass matrix is constructed from the tributary mass areas to the nodal mass points. Both free and forced vibrations are considered and numerical examples are presented to illustrate the method and its merits. © 1990 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Acta Mechanica |
en |
dc.identifier.doi |
10.1007/BF01174732 |
en |
dc.identifier.isi |
ISI:A1990DY11800005 |
en |
dc.identifier.volume |
83 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
51 |
en |
dc.identifier.epage |
60 |
en |