dc.contributor.author |
Cash, JR |
en |
dc.contributor.author |
Raptis, AD |
en |
dc.contributor.author |
Simos, TE |
en |
dc.date.accessioned |
2014-03-01T01:07:46Z |
|
dc.date.available |
2014-03-01T01:07:46Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0010-4655 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10150 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0025212351&partnerID=40&md5=3b7f0b1f04690ca109f78a8939a98517 |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
Computer Programming Languages--FORTRAN |
en |
dc.subject.other |
Computer Programming--Algorithms |
en |
dc.subject.other |
Bessel Fitting Methods |
en |
dc.subject.other |
Error Control |
en |
dc.subject.other |
Numerical Integration |
en |
dc.subject.other |
Runge-Kutta Methods |
en |
dc.subject.other |
Schroedinger Equation |
en |
dc.subject.other |
Mathematical Techniques |
en |
dc.title |
A Fortran program for the numerical integration of the one-dimensional Schrödinger equation using exponential and Bessel fitting methods |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
An efficient algorithm is described for the accurate numerical integration of the one-dimensional Schrödinger equation. This algorithm uses a high-order, variable step Runge-Kutta like method in the region where the potential term dominates, and an exponential or Bessel fitted method in the asymptotic region. This approach can be used to compute scattering phase shifts in an efficient and reliable manner. A Fortran program which implements this algorithm is provided and some test results are given. © 1990. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computer Physics Communications |
en |
dc.identifier.isi |
ISI:A1990CR07100008 |
en |
dc.identifier.volume |
56 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
391 |
en |
dc.identifier.epage |
407 |
en |