dc.contributor.author |
Watanabe, K |
en |
dc.contributor.author |
Tzafestas, SG |
en |
dc.date.accessioned |
2014-03-01T01:07:46Z |
|
dc.date.available |
2014-03-01T01:07:46Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0005-1098 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10153 |
|
dc.subject |
Decentralized control |
en |
dc.subject |
Failure detection |
en |
dc.subject |
Hierarchical decision making |
en |
dc.subject |
Kalman filters |
en |
dc.subject |
Parameter estimation |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Actuators |
en |
dc.subject.other |
Computer Programming--Algorithms |
en |
dc.subject.other |
Control Systems, Discrete Time |
en |
dc.subject.other |
Control Systems, Stochastic |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Decentralized Control |
en |
dc.subject.other |
Failure Detection and Identification |
en |
dc.subject.other |
Control Systems, Adaptive |
en |
dc.title |
A hierarchical multiple model adaptive control of discrete-time stochastic systems for sensor and actuator uncertainties |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0005-1098(90)90004-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0005-1098(90)90004-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
A hierarchical multiple model adaptive control (MMAC) is described for discrete-time stochastic systems with unknown sensor and actuator parameters, where the decentralized structure consists of a central processor and of m local processors which do not communicate between each other. A major assumption in this study is that the central and any local stations have different knowledge of the hypotheses on the unknown parameters. This leads to a flexible design algorithm for passively adaptive control strategies. Furthermore, the coordinator algorithm in evaluating the global a posteriori probability is relatively simple to implement. The result is applied to the design problem of an instrument failure detection and identification (FDI) system. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Automatica |
en |
dc.identifier.doi |
10.1016/0005-1098(90)90004-2 |
en |
dc.identifier.isi |
ISI:A1990DZ72500004 |
en |
dc.identifier.volume |
26 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
875 |
en |
dc.identifier.epage |
886 |
en |