dc.contributor.author |
KOLLIAS, S |
en |
dc.date.accessioned |
2014-03-01T01:07:47Z |
|
dc.date.available |
2014-03-01T01:07:47Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10167 |
|
dc.subject |
Associative Memory |
en |
dc.subject |
backpropagation |
en |
dc.subject |
Digital Image |
en |
dc.subject |
Event Detection |
en |
dc.subject |
Learning Algorithm |
en |
dc.subject |
Neural Network Application |
en |
dc.subject |
Optimization Problem |
en |
dc.subject |
Signal and Image Processing |
en |
dc.subject |
Signal Processing |
en |
dc.subject |
Simulated Annealing |
en |
dc.subject |
Neural Network |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.title |
A STUDY OF NEURAL NETWORK APPLICATIONS TO SIGNAL-PROCESSING |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/3-540-52255-7_44 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/3-540-52255-7_44 |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
This paper examines the use of two characteristic neural network architectures to signal and image processing applications. Digital image halftoning and seismic event detection are treated as optimization problems, to which symmetric Hopfield-type networks with near-neighbor-connections provide efficient solutions. A solution to the halftoning problem, provided by simulated annealing, is also examined and compared to the neural network one. Feedforward |
en |
heal.publisher |
SPRINGER VERLAG |
en |
heal.journalName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/3-540-52255-7_44 |
en |
dc.identifier.isi |
ISI:A1990CX06600021 |
en |
dc.identifier.volume |
412 |
en |
dc.identifier.spage |
233 |
en |
dc.identifier.epage |
242 |
en |