dc.contributor.author |
Tsinias, J |
en |
dc.date.accessioned |
2014-03-01T01:07:48Z |
|
dc.date.available |
2014-03-01T01:07:48Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0167-6911 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10184 |
|
dc.subject |
asymptotic stabilization |
en |
dc.subject |
control Lyapunov functions |
en |
dc.subject |
Nonlinear systems |
en |
dc.subject |
state feedback |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
System Stability - Lyapunov Methods |
en |
dc.subject.other |
Asymptotic Stabilization |
en |
dc.subject.other |
Feedback Stabilization |
en |
dc.subject.other |
Control Systems, Nonlinear |
en |
dc.title |
Asymptotic feedback stabilization: A sufficient condition for the existence of control Lyapunov functions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0167-6911(90)90069-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0167-6911(90)90069-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
In this paper we study the feedback stabilization problem for a wide class of nonlinear systems that are affine in the control. We offer sufficient conditions for the existence of 'Control Lyapunov functions' that according to [3,23] and [28-30] guarantee stabilization at a specified equilibrium by means of a feedback law, which is smooth except possibly at the equilibrium. We note that the results of the paper present a local nature. © 1990. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Systems and Control Letters |
en |
dc.identifier.doi |
10.1016/0167-6911(90)90069-7 |
en |
dc.identifier.isi |
ISI:A1990EP38100011 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
441 |
en |
dc.identifier.epage |
448 |
en |