HEAL DSpace

Closed form solutions of the differential equations governing the plastic fracture field in a power-law hardening material with low strain-hardening exponent

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Panayotounakos, DE en
dc.contributor.author Markakis, M en
dc.date.accessioned 2014-03-01T01:07:50Z
dc.date.available 2014-03-01T01:07:50Z
dc.date.issued 1990 en
dc.identifier.issn 0020-1154 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10193
dc.subject Closed Form Solution en
dc.subject Differential Equation en
dc.subject Fracture Mechanic en
dc.subject Large Classes en
dc.subject Linear Differential Equation en
dc.subject Strain Hardening en
dc.subject Higher Order en
dc.subject Power Law en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mechanics en
dc.subject.other Fracture Mechanics en
dc.subject.other Mathematical Techniques--Differential Equations en
dc.subject.other Plasticity en
dc.subject.other Strain en
dc.subject.other Stresses--Analysis en
dc.subject.other Low Strain-Hardening Exponent en
dc.subject.other Plastic Fracture Field en
dc.subject.other Power-Law Hardening Material en
dc.subject.other Rice-Rosengren Equations en
dc.subject.other Materials en
dc.title Closed form solutions of the differential equations governing the plastic fracture field in a power-law hardening material with low strain-hardening exponent en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF00531255 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF00531255 en
heal.language English en
heal.publicationDate 1990 en
heal.abstract In this paper closed form solutions for the evaluation of the stress and strain-fields are estimated for a power-law hardening, plastically incompressible material, cracked under plane-strain conditions. A convenient decoupling methodology, concerning a strongly non-linear ordinary differential system given by Rice and Rosengren [1], leads to a modified higher-order non-linear differential equation which for the case of low strain-hardening behaviour, using appropriate analytical treatments, is integrated in a closed form. Applications of the derived solutions for low hardening exponents yield results which are in excellent agreement with those derived numerically by other investigators. The solutions obtained herein cover a large class of problems in the mathematical theory of plasticity and fracture mechanics, and may be proved powerful in application . © 1990 Springer-Verlag. en
heal.publisher Springer-Verlag en
heal.journalName Ingenieur-Archiv en
dc.identifier.doi 10.1007/BF00531255 en
dc.identifier.isi ISI:A1990EF39600003 en
dc.identifier.volume 60 en
dc.identifier.issue 7 en
dc.identifier.spage 444 en
dc.identifier.epage 462 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής