dc.contributor.author |
Panayotounakos, DE |
en |
dc.contributor.author |
Markakis, M |
en |
dc.date.accessioned |
2014-03-01T01:07:50Z |
|
dc.date.available |
2014-03-01T01:07:50Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0020-1154 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10193 |
|
dc.subject |
Closed Form Solution |
en |
dc.subject |
Differential Equation |
en |
dc.subject |
Fracture Mechanic |
en |
dc.subject |
Large Classes |
en |
dc.subject |
Linear Differential Equation |
en |
dc.subject |
Strain Hardening |
en |
dc.subject |
Higher Order |
en |
dc.subject |
Power Law |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Fracture Mechanics |
en |
dc.subject.other |
Mathematical Techniques--Differential Equations |
en |
dc.subject.other |
Plasticity |
en |
dc.subject.other |
Strain |
en |
dc.subject.other |
Stresses--Analysis |
en |
dc.subject.other |
Low Strain-Hardening Exponent |
en |
dc.subject.other |
Plastic Fracture Field |
en |
dc.subject.other |
Power-Law Hardening Material |
en |
dc.subject.other |
Rice-Rosengren Equations |
en |
dc.subject.other |
Materials |
en |
dc.title |
Closed form solutions of the differential equations governing the plastic fracture field in a power-law hardening material with low strain-hardening exponent |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00531255 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00531255 |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
In this paper closed form solutions for the evaluation of the stress and strain-fields are estimated for a power-law hardening, plastically incompressible material, cracked under plane-strain conditions. A convenient decoupling methodology, concerning a strongly non-linear ordinary differential system given by Rice and Rosengren [1], leads to a modified higher-order non-linear differential equation which for the case of low strain-hardening behaviour, using appropriate analytical treatments, is integrated in a closed form. Applications of the derived solutions for low hardening exponents yield results which are in excellent agreement with those derived numerically by other investigators. The solutions obtained herein cover a large class of problems in the mathematical theory of plasticity and fracture mechanics, and may be proved powerful in application . © 1990 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Ingenieur-Archiv |
en |
dc.identifier.doi |
10.1007/BF00531255 |
en |
dc.identifier.isi |
ISI:A1990EF39600003 |
en |
dc.identifier.volume |
60 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
444 |
en |
dc.identifier.epage |
462 |
en |