HEAL DSpace

Gauss quadrature rules for finite part integrals

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsamasphyros, George en
dc.contributor.author Dimou, George en
dc.date.accessioned 2014-03-01T01:07:53Z
dc.date.available 2014-03-01T01:07:53Z
dc.date.issued 1990 en
dc.identifier.issn 0029-5981 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10229
dc.subject Quadrature Rule en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Computer Programming--Algorithms en
dc.subject.other Gauss Quadrature Rules en
dc.subject.other Riemann Integrals en
dc.subject.other Mathematical Techniques en
dc.title Gauss quadrature rules for finite part integrals en
heal.type journalArticle en
heal.identifier.primary 10.1002/nme.1620300103 en
heal.identifier.secondary http://dx.doi.org/10.1002/nme.1620300103 en
heal.language English en
heal.publicationDate 1990 en
heal.abstract We construct a set of polynomials Φn(x, ξ) which are orthogonal with respect to w(x)/(x - ξ)2, where w(x) is a weight function. These polynomials can be used for the definition of a Gauss quadrature formula for a given finite part integral. The process is exactly the same as the one used for the extraction of the classical Gauss formula for the Riemann integrals. Three different methods are derived. The first and most accurate quadrature formula is successfully tested in some numerical examples. The proposed quadrature formulas have many applications in problems of mathematical physics, mechanics, etc. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName International Journal for Numerical Methods in Engineering en
dc.identifier.doi 10.1002/nme.1620300103 en
dc.identifier.isi ISI:A1990DR98000002 en
dc.identifier.volume 30 en
dc.identifier.issue 1 en
dc.identifier.spage 13 en
dc.identifier.epage 26 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής