dc.contributor.author |
Tsamasphyros, George |
en |
dc.contributor.author |
Dimou, George |
en |
dc.date.accessioned |
2014-03-01T01:07:53Z |
|
dc.date.available |
2014-03-01T01:07:53Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0029-5981 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10229 |
|
dc.subject |
Quadrature Rule |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Computer Programming--Algorithms |
en |
dc.subject.other |
Gauss Quadrature Rules |
en |
dc.subject.other |
Riemann Integrals |
en |
dc.subject.other |
Mathematical Techniques |
en |
dc.title |
Gauss quadrature rules for finite part integrals |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/nme.1620300103 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/nme.1620300103 |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
We construct a set of polynomials Φn(x, ξ) which are orthogonal with respect to w(x)/(x - ξ)2, where w(x) is a weight function. These polynomials can be used for the definition of a Gauss quadrature formula for a given finite part integral. The process is exactly the same as the one used for the extraction of the classical Gauss formula for the Riemann integrals. Three different methods are derived. The first and most accurate quadrature formula is successfully tested in some numerical examples. The proposed quadrature formulas have many applications in problems of mathematical physics, mechanics, etc. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal for Numerical Methods in Engineering |
en |
dc.identifier.doi |
10.1002/nme.1620300103 |
en |
dc.identifier.isi |
ISI:A1990DR98000002 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
13 |
en |
dc.identifier.epage |
26 |
en |