dc.contributor.author |
Theotokoglou, EN |
en |
dc.date.accessioned |
2014-03-01T01:07:59Z |
|
dc.date.available |
2014-03-01T01:07:59Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0013-7944 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10238 |
|
dc.subject |
Integral Equation |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Mathematical Techniques--Integral Equations |
en |
dc.subject.other |
Cracked Finite Elastic Disc |
en |
dc.subject.other |
Plane Elasticity Problem |
en |
dc.subject.other |
Singular Integral Equation (SIE) |
en |
dc.subject.other |
Disks |
en |
dc.title |
Integral equation solution of the cracked finite elastic disc |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0013-7944(90)90116-X |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0013-7944(90)90116-X |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
The problem of the finite disc weakened by a crack is considered and reduced to a singular integral equation for an arbitrary crack location. Two kinds of loading are considered. An internal pressure within the crack, and two in-plane concentrated forces applied on the disc. Appropriate numerical procedures employed and accurate results reported for the stress intensity factors. Existent results in the literature, on the problem, reasserted. © 1990. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Engineering Fracture Mechanics |
en |
dc.identifier.doi |
10.1016/0013-7944(90)90116-X |
en |
dc.identifier.isi |
ISI:A1990DU60100006 |
en |
dc.identifier.volume |
36 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
611 |
en |
dc.identifier.epage |
618 |
en |