dc.contributor.author |
Watanabe, K |
en |
dc.contributor.author |
Tzafestas, SG |
en |
dc.date.accessioned |
2014-03-01T01:08:00Z |
|
dc.date.available |
2014-03-01T01:08:00Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0921-0296 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10242 |
|
dc.subject |
Kalman filters |
en |
dc.subject |
learning systems |
en |
dc.subject |
Neural nets |
en |
dc.subject |
nonlinear filtering |
en |
dc.subject |
parameter estimation |
en |
dc.subject |
pattern recognition |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Robotics |
en |
dc.title |
Learning algorithms for neural networks with the Kalman filters |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00439421 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00439421 |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
Based on various approaches, several different learing algorithms have been given in the literature for neural networks. Almost all algorithms have constant learning rates or constant accelerative parameters, though they have been shown to be effective for some practical applications. The learning procedure of neural networks can be regarded as a problem of estimating (or identifying) constant parameters (i.e. connection weights of network) with a nonlinear or linear observation equation. Making use of the Kalman filtering, we derive a new back-propagation algorithm whose learning rate is computed by a time-varying Riccati difference equation. Perceptron-like and correlational learning algorithms are also obtained as special cases. Furthermore, a self-organising algorithm of feature maps is constructed within a similar framework. © 1990 Kluwer Academic Publishers. |
en |
heal.publisher |
Kluwer Academic Publishers |
en |
heal.journalName |
Journal of Intelligent and Robotic Systems |
en |
dc.identifier.doi |
10.1007/BF00439421 |
en |
dc.identifier.isi |
ISI:A1990ER31600002 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
305 |
en |
dc.identifier.epage |
319 |
en |