dc.contributor.author |
Simos, TE |
en |
dc.contributor.author |
Raptis, AD |
en |
dc.date.accessioned |
2014-03-01T01:08:00Z |
|
dc.date.available |
2014-03-01T01:08:00Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0010-485X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10248 |
|
dc.subject |
AMS Subject Classification: 65L05 |
en |
dc.subject |
phase-lag |
en |
dc.subject |
resonance problem |
en |
dc.subject |
Schrödinger equation |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Numerical Integration |
en |
dc.subject.other |
Schrodinger Equation |
en |
dc.subject.other |
Mathematical Techniques |
en |
dc.title |
Numerov-type methods with minimal phase-lag for the numerical integration of the one-dimensional Schrödinger equation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02247883 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02247883 |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
Three Numerov-type methods with phase-lag of order eight and ten are developed for the numerical integration of the one-dimensional Schrödinger equation. One has a large interval of periodicity and the other two are P-stable. Extensive numerical testing on the resonance problem indicates that these new methods are generally more accurate than other previously developed finite difference methods for this problem. © 1990 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Computing |
en |
dc.identifier.doi |
10.1007/BF02247883 |
en |
dc.identifier.isi |
ISI:A1990EC79500007 |
en |
dc.identifier.volume |
45 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
175 |
en |
dc.identifier.epage |
181 |
en |