dc.contributor.author |
Kounadis, AN |
en |
dc.contributor.author |
Mahrenholtz, O |
en |
dc.contributor.author |
Bogaez, R |
en |
dc.date.accessioned |
2014-03-01T01:08:03Z |
|
dc.date.available |
2014-03-01T01:08:03Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0020-1154 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10259 |
|
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Mathematical Models |
en |
dc.subject.other |
Pontoons |
en |
dc.subject.other |
Structural Analysis |
en |
dc.subject.other |
Floating Bridges |
en |
dc.subject.other |
Fluid-Structure Interaction |
en |
dc.subject.other |
Nonlinear Dynamic Stability |
en |
dc.subject.other |
Bridges |
en |
dc.title |
Non-linear dynamic stability of a simple floating bridge model |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00577863 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00577863 |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
This paper deals with a simple fluid-structure interaction problem of floating bridges under step loading with main emphasis on the non-linear dynamic stability of the structure itself after been simulated by a simple discrete mechanical model. The analysis concerns systems which under the same loading applied statically experience a limit point instability. On the basis of a theoretical discussion of the non-linear response of a single degree-of-freedom model simple conditions for an unbounded motion associated with dynamic buckling have been properly established. According to these conditions one can determine the exact dynamic buckling load without solving the strongly non-linear differential equation of motion. Such a load corresponds to that equilibrium point of the unstable (static) post-buckling path for which the total potential energy of the model becomes zero, while at the same time its second variation is negative definite. This load is also a lower bound in case that damping is included in the analysis. The foregoing conditions of static evaluation of the dynamic buckling load do not hold, in general, for limit point systems of two degres of freedom. The above theoretical predictions have been confirmed by means of numerical integration of the correspending non-linear equation of motion. © 1990 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Ingenieur-Archiv |
en |
dc.identifier.doi |
10.1007/BF00577863 |
en |
dc.identifier.isi |
ISI:A1990DC53700006 |
en |
dc.identifier.volume |
60 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
262 |
en |
dc.identifier.epage |
273 |
en |