HEAL DSpace

Non-linear dynamic stability of a simple floating bridge model

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kounadis, AN en
dc.contributor.author Mahrenholtz, O en
dc.contributor.author Bogaez, R en
dc.date.accessioned 2014-03-01T01:08:03Z
dc.date.available 2014-03-01T01:08:03Z
dc.date.issued 1990 en
dc.identifier.issn 0020-1154 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10259
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mechanics en
dc.subject.other Dynamics en
dc.subject.other Mathematical Models en
dc.subject.other Pontoons en
dc.subject.other Structural Analysis en
dc.subject.other Floating Bridges en
dc.subject.other Fluid-Structure Interaction en
dc.subject.other Nonlinear Dynamic Stability en
dc.subject.other Bridges en
dc.title Non-linear dynamic stability of a simple floating bridge model en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF00577863 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF00577863 en
heal.language English en
heal.publicationDate 1990 en
heal.abstract This paper deals with a simple fluid-structure interaction problem of floating bridges under step loading with main emphasis on the non-linear dynamic stability of the structure itself after been simulated by a simple discrete mechanical model. The analysis concerns systems which under the same loading applied statically experience a limit point instability. On the basis of a theoretical discussion of the non-linear response of a single degree-of-freedom model simple conditions for an unbounded motion associated with dynamic buckling have been properly established. According to these conditions one can determine the exact dynamic buckling load without solving the strongly non-linear differential equation of motion. Such a load corresponds to that equilibrium point of the unstable (static) post-buckling path for which the total potential energy of the model becomes zero, while at the same time its second variation is negative definite. This load is also a lower bound in case that damping is included in the analysis. The foregoing conditions of static evaluation of the dynamic buckling load do not hold, in general, for limit point systems of two degres of freedom. The above theoretical predictions have been confirmed by means of numerical integration of the correspending non-linear equation of motion. © 1990 Springer-Verlag. en
heal.publisher Springer-Verlag en
heal.journalName Ingenieur-Archiv en
dc.identifier.doi 10.1007/BF00577863 en
dc.identifier.isi ISI:A1990DC53700006 en
dc.identifier.volume 60 en
dc.identifier.issue 4 en
dc.identifier.spage 262 en
dc.identifier.epage 273 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής