dc.contributor.author |
Athanassoulis, GA |
en |
dc.contributor.author |
Politis, CG |
en |
dc.date.accessioned |
2014-03-01T01:08:05Z |
|
dc.date.available |
2014-03-01T01:08:05Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0033-569X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10269 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0025399714&partnerID=40&md5=9e032112a1799ca2c8b33215d9ac8e57 |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Hydrodynamics |
en |
dc.subject.other |
Mathematical Techniques--Conformal Mapping |
en |
dc.subject.other |
Wave-Body Interaction Problem |
en |
dc.subject.other |
Water Waves |
en |
dc.title |
On the solvability of a two-dimensional wave-body interaction problem |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
The two-dimensional, deep-water, wave-body interaction problem for a single-hulled body, floating on the free surface of an ideal liquid, is considered. The body boundary may be nonsmooth and may intersect the free surface at arbitrary angles. The existence of a unique solution representable by a multipole-series expansion is proved for all but a discrete set of oscillation frequencies. The proof is based on the property of the associated multipoles to be a basis of the space LP(-π, 0), 1 < p ≤ 2. Strict estimates of the form Dn = O(n-α) are also obtained for the coefficients of the multipole-series expansion for piecewise smooth (0 < α < 2) and smooth (α = 2) body boundaries. |
en |
heal.publisher |
AMER MATHEMATICAL SOC |
en |
heal.journalName |
Quarterly of Applied Mathematics |
en |
dc.identifier.isi |
ISI:A1990CT50700001 |
en |
dc.identifier.volume |
48 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
30 |
en |