dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:08:05Z |
|
dc.date.available |
2014-03-01T01:08:05Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0022-3239 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10270 |
|
dc.subject |
Arzela-Ascoli theorem |
en |
dc.subject |
Caratheodory integrands |
en |
dc.subject |
dense embedding |
en |
dc.subject |
Evolution inclusions |
en |
dc.subject |
monotone operators |
en |
dc.subject |
parabolic systems |
en |
dc.subject |
relaxed systems |
en |
dc.subject |
support functions |
en |
dc.subject |
transition probability |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Control Systems, Distributed Parameter |
en |
dc.subject.other |
Mathematical Techniques - Topology |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Dense Embedding |
en |
dc.subject.other |
Monotone Operators |
en |
dc.subject.other |
Nonlinear Evolution Inclusions |
en |
dc.subject.other |
Parabolic Systems |
en |
dc.subject.other |
Relaxed Systems |
en |
dc.subject.other |
Control Systems, Optimal |
en |
dc.title |
Optimal control of nonlinear evolution inclusions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00940479 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00940479 |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
In this paper, we study the optimal control of nonlinear evolution inclusions. First, we prove the existence of admissible trajectories and then we show that the set that they form is relatively sequentially compact and in certain cases sequentially compact in an appropriate function space. Then, with the help of a convexity hypothesis and using Cesari's approach, we solve a general Lagrange optimal control problem. After that, we drop the convexity hypothesis and pass to the relaxed system, for which we prove the existence of optimal controls, we show that it has a value equal to that of the original one, and also we prove that the original trajectories are dense in an appropriate topology to the relaxed ones. Finally, we present an example of a nonlinear parabolic optimal control that illustrates the applicability of our results. © 1990 Plenum Publishing Corporation. |
en |
heal.publisher |
Kluwer Academic Publishers-Plenum Publishers |
en |
heal.journalName |
Journal of Optimization Theory and Applications |
en |
dc.identifier.doi |
10.1007/BF00940479 |
en |
dc.identifier.isi |
ISI:A1990EK88000007 |
en |
dc.identifier.volume |
67 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
321 |
en |
dc.identifier.epage |
354 |
en |