dc.contributor.author |
Tsinias, J |
en |
dc.date.accessioned |
2014-03-01T01:08:06Z |
|
dc.date.available |
2014-03-01T01:08:06Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0167-6911 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10271 |
|
dc.subject |
Lyapunov functions |
en |
dc.subject |
Nonlinear systems |
en |
dc.subject |
optimal |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
System Stability - Lyapunov Methods |
en |
dc.subject.other |
Feedback Stabilization |
en |
dc.subject.other |
Output Feedback |
en |
dc.subject.other |
Control Systems, Optimal |
en |
dc.title |
Optimal controllers and output feedback stabilization |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0167-6911(90)90100-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0167-6911(90)90100-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
In this paper the output feedback stabilizability problem is explored in terms of control Lyapunov functions. Sufficient conditions for stabilization are provided for a certain class of systems by means of output feedback stabilizers that can be obtained from an optimization problem. Our main results extends those developed in [31] and generalize a theorem due to Sontag [23]. © 1990. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Systems and Control Letters |
en |
dc.identifier.doi |
10.1016/0167-6911(90)90100-9 |
en |
dc.identifier.isi |
ISI:A1990EK50600001 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
277 |
en |
dc.identifier.epage |
284 |
en |