dc.contributor.author |
Tsitouras, Ch |
en |
dc.contributor.author |
Papageorgiou, G |
en |
dc.date.accessioned |
2014-03-01T01:08:08Z |
|
dc.date.available |
2014-03-01T01:08:08Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0010-485X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10295 |
|
dc.subject |
AMS Subject Classfication: 65L05 |
en |
dc.subject |
Initial value problem |
en |
dc.subject |
Interpolation |
en |
dc.subject |
Rung-Kutta methods |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.title |
Runge-Kutta interpolants based on values from two successive integration steps |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02242920 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02242920 |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
New interpolants of the explicit Runge-Kutta method for the initial value problem are proposed. These interpolants are based on values of the solution and its derivative from two successive integration steps. In this paper, three interpolants with O(h6) local error (l.e.), for the fifth order solution, of the methods Fehlberg 4(5) (RKF 4(5)), Dormand and Prince 5(4) (RKDP 5(4)) and Verner 5(6) (RKV 5(6)) without extra cost are derived. An interpolant with O(h7) (l.e.) for the sixth order solution of the Verner's method with only one extra function evaluation per integration step is also constructed. The above advantages are obtained without any cost in the magnitude of the error. © 1990 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Computing |
en |
dc.identifier.doi |
10.1007/BF02242920 |
en |
dc.identifier.isi |
ISI:A1990CT22100004 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
255 |
en |
dc.identifier.epage |
266 |
en |