dc.contributor.author |
Bardis, L |
en |
dc.contributor.author |
Patrikalakis, NM |
en |
dc.date.accessioned |
2014-03-01T01:08:10Z |
|
dc.date.available |
2014-03-01T01:08:10Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0177-0667 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10306 |
|
dc.subject |
Approximate Algorithm |
en |
dc.subject |
b-spline curve |
en |
dc.subject |
b-spline surface |
en |
dc.subject |
Canonical Representation |
en |
dc.subject |
Geometric Model |
en |
dc.subject |
Numerical Experiment |
en |
dc.subject |
Parametric Surface |
en |
dc.subject |
Surface Approximation |
en |
dc.subject |
Surface Model |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Mathematical Techniques--Algorithms |
en |
dc.subject.other |
Approximation Algorithms |
en |
dc.subject.other |
B-Splines |
en |
dc.subject.other |
Canonical Representations |
en |
dc.subject.other |
Surfaces |
en |
dc.title |
Surface approximation with rational B-splines |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01200370 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01200370 |
en |
heal.language |
English |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
Many modern geometric modelers use nonuniform rational B-spline curves and surfaces as their canonical representations. Rational B-splines are a versatile representation, encompassing integral B-splines and the basic classical primitives such as conics, quadrics, and torii. However, rational B-splines representations other than these classical primitives have found little application in surface modeling. In this paper we develop approximation algorithms based on the general rational B-spline formulation. Numerical experiments indicate that rational B-splines allow a significantly more compact approximation of two classes of parametric surfaces in comparison to integral B-splines. The two classes of surfaces studied are generalized cylinders and offsets of a rational B-spline surface patch progenitor. © 1990 Springer-Verlag New York Inc. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Engineering with Computers |
en |
dc.identifier.doi |
10.1007/BF01200370 |
en |
dc.identifier.isi |
ISI:A1990EG22900003 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
223 |
en |
dc.identifier.epage |
235 |
en |