dc.contributor.author |
Stassinopoulos, GI |
en |
dc.contributor.author |
Kazantzakis, MG |
en |
dc.date.accessioned |
2014-03-01T01:08:12Z |
|
dc.date.available |
2014-03-01T01:08:12Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
0090-6778 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10331 |
|
dc.subject |
Capacity Allocation |
en |
dc.subject |
Computational Complexity |
en |
dc.subject |
Cost Function |
en |
dc.subject |
Dynamic Routing |
en |
dc.subject |
Iterative Algorithm |
en |
dc.subject |
Iterative Solution |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Upper Bound |
en |
dc.subject |
Origin Destination |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Telecommunications |
en |
dc.subject.other |
Mathematical Programming, Linear |
en |
dc.subject.other |
Mathematical Techniques - Differential Equations |
en |
dc.subject.other |
Mathematical Techniques - Iterative Methods |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Computer Software MULTDEST |
en |
dc.subject.other |
Multidestination Dynamic Routing |
en |
dc.subject.other |
Optimal Dynamic Routing |
en |
dc.subject.other |
Telecommunication |
en |
dc.title |
A computationally efficient iterative solution of the multidestination optimal dynamic routing problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/26.99143 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/26.99143 |
en |
heal.language |
English |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
The dynamic routing problem for multiple destination networks is considered. The minimum time rather than total delay cost functional is employed. The problem is solved through an iterative link-by-link optimization. Each link capacity is optimally partitioned by examining the upper bounds for the evacuation time imposed through different capacity allocations for each origin/destination pair traffic. The computational complexity per iteration is polynomial in the number of network nodes. This is due to the examination of origin/destination pairs rather then destinations alone as in previous work where a similar approach led to exponential complexity. Sufficient conditions for the convergence of the iterative algorithm to the optimum are given. If these are not satisfied supplementary steps are described which conduct the algorithm to the desired solution. These involve exponential computational complexity. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Communications |
en |
dc.identifier.doi |
10.1109/26.99143 |
en |
dc.identifier.isi |
ISI:A1991GM66800014 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
1370 |
en |
dc.identifier.epage |
1378 |
en |