dc.contributor.author |
Drikakis, D |
en |
dc.contributor.author |
Tsangaris, S |
en |
dc.date.accessioned |
2014-03-01T01:08:14Z |
|
dc.date.available |
2014-03-01T01:08:14Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
0271-2091 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10363 |
|
dc.subject |
EULER EQUATIONS |
en |
dc.subject |
UPWIND METHODS |
en |
dc.subject |
REAL GASES |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.other |
Equations of State |
en |
dc.subject.other |
Mathematical Techniques--Numerical Methods |
en |
dc.subject.other |
Euler Equations |
en |
dc.subject.other |
Real Gases |
en |
dc.subject.other |
Upwind Methods |
en |
dc.subject.other |
Gas Dynamics |
en |
dc.title |
Implicit characteristic-flux-averaging method for the Euler equations for real gases |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/fld.1650120803 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/fld.1650120803 |
en |
heal.language |
English |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
A formulation of an implicit characteristic-flux-averaging method for the unsteady Euler equations with real gas effects is presented. Incorporation of a real gas into a general equation of state is achieved by considering the pressure as a function of density and specific internal energy. The Riemann solver as well as the flux-split algorithm are modified by introducing the pressure derivatives with respect to density and internal energy. Expressions for calculating the values of the flow variables for a real gas at the cell faces are derived. The Jacobian matrices and the eigenvectors are defined for a general equation of state. The solution of the system of equations is obtained by using a mesh-sequencing method for acceleration of the convergence. Finally, a test case for a simple form of equation of state displays the differences from the corresponding solution for an ideal gas. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal for Numerical Methods in Fluids |
en |
dc.identifier.doi |
10.1002/fld.1650120803 |
en |
dc.identifier.isi |
ISI:A1991FK61800001 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
611 |
en |
dc.identifier.epage |
626 |
en |