dc.contributor.author |
Buldygin, V |
en |
dc.contributor.author |
Zayats, V |
en |
dc.date.accessioned |
2014-03-01T01:08:16Z |
|
dc.date.available |
2014-03-01T01:08:16Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10378 |
|
dc.subject |
Asymptotic Normal |
en |
dc.subject |
Asymptotic Properties |
en |
dc.subject |
Correlation Function |
en |
dc.subject |
Function Space |
en |
dc.subject |
Gaussian Random Field |
en |
dc.subject |
Hilbert Space |
en |
dc.subject |
Weight Function |
en |
dc.title |
Asymptotic properties of correlation bounds in functional spaces. I |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01060500 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01060500 |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
This paper is an extension of [11]. Starting from the results of our first paper we prove by inclusion theorems that bounds for the correlation function of a stationary Gaussian process in the space of continuous functions with weight are strongly consistent and asymptotically normal. We construct the simplest functional confidence intervals in these spaces for the indeterminate correlation function. |
en |
heal.journalName |
Ukrainian Mathematical Journal |
en |
dc.identifier.doi |
10.1007/BF01060500 |
en |