dc.contributor.author |
Sapountzakis, EJ |
en |
dc.contributor.author |
Katsikadelis, JT |
en |
dc.date.accessioned |
2014-03-01T01:08:16Z |
|
dc.date.available |
2014-03-01T01:08:16Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
0733-9399 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10381 |
|
dc.subject |
Boundary Element |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Aerospace Engineering |
en |
dc.subject.other |
Civil Engineering |
en |
dc.subject.other |
Machine Design |
en |
dc.subject.other |
Mathematical Techniques--Boundary Element Method |
en |
dc.subject.other |
Structural Design--Earthquake Resistance |
en |
dc.subject.other |
Boundary Value Problems |
en |
dc.subject.other |
Differential Equations |
en |
dc.subject.other |
Domains of Arbitrary Shape |
en |
dc.subject.other |
Gaussian Integration |
en |
dc.subject.other |
Integral Equations |
en |
dc.subject.other |
Variable Thickness Plates |
en |
dc.subject.other |
Plates |
en |
dc.title |
Boundary element solution for plates of variable thickness |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)0733-9399(1991)117:6(1241) |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:6(1241) |
en |
heal.language |
English |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
A boundary element method (BEM) is developed for the analysis of plates of variable thickness. The plate may have arbitrary shape, and its boundary may be subjected to any type of boundary conditions. The nonuniform thickness of the plate is an arbitrary function of the coordinates x, y. Since it is practically not possible to establish the fundamental solution of the governing equation, which is a differential equation with variable coefficients, the proposed method uses the fundamental solution of the plate with constant thickness and treats the unknown terms as domain forces. The boundary value problem is formulated in terms of two differential and three integral coupled equations. The differential equations are solved using the finite difference method, while the integral equations using the BEM. The domain integrals are treated by employing an effective Gaussian integration over domains of arbitrary shape. Numerical results are presented to illustrate the method and demonstrate its efficiency and accuracy. |
en |
heal.publisher |
ASCE-AMER SOC CIVIL ENG |
en |
heal.journalName |
Journal of Engineering Mechanics |
en |
dc.identifier.doi |
10.1061/(ASCE)0733-9399(1991)117:6(1241) |
en |
dc.identifier.isi |
ISI:A1991FN16900003 |
en |
dc.identifier.volume |
117 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
1241 |
en |
dc.identifier.epage |
1256 |
en |