HEAL DSpace

Boundary element solution for plates of variable thickness

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Katsikadelis, JT en
dc.date.accessioned 2014-03-01T01:08:16Z
dc.date.available 2014-03-01T01:08:16Z
dc.date.issued 1991 en
dc.identifier.issn 0733-9399 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10381
dc.subject Boundary Element en
dc.subject.classification Engineering, Mechanical en
dc.subject.other Aerospace Engineering en
dc.subject.other Civil Engineering en
dc.subject.other Machine Design en
dc.subject.other Mathematical Techniques--Boundary Element Method en
dc.subject.other Structural Design--Earthquake Resistance en
dc.subject.other Boundary Value Problems en
dc.subject.other Differential Equations en
dc.subject.other Domains of Arbitrary Shape en
dc.subject.other Gaussian Integration en
dc.subject.other Integral Equations en
dc.subject.other Variable Thickness Plates en
dc.subject.other Plates en
dc.title Boundary element solution for plates of variable thickness en
heal.type journalArticle en
heal.identifier.primary 10.1061/(ASCE)0733-9399(1991)117:6(1241) en
heal.identifier.secondary http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:6(1241) en
heal.language English en
heal.publicationDate 1991 en
heal.abstract A boundary element method (BEM) is developed for the analysis of plates of variable thickness. The plate may have arbitrary shape, and its boundary may be subjected to any type of boundary conditions. The nonuniform thickness of the plate is an arbitrary function of the coordinates x, y. Since it is practically not possible to establish the fundamental solution of the governing equation, which is a differential equation with variable coefficients, the proposed method uses the fundamental solution of the plate with constant thickness and treats the unknown terms as domain forces. The boundary value problem is formulated in terms of two differential and three integral coupled equations. The differential equations are solved using the finite difference method, while the integral equations using the BEM. The domain integrals are treated by employing an effective Gaussian integration over domains of arbitrary shape. Numerical results are presented to illustrate the method and demonstrate its efficiency and accuracy. en
heal.publisher ASCE-AMER SOC CIVIL ENG en
heal.journalName Journal of Engineering Mechanics en
dc.identifier.doi 10.1061/(ASCE)0733-9399(1991)117:6(1241) en
dc.identifier.isi ISI:A1991FN16900003 en
dc.identifier.volume 117 en
dc.identifier.issue 6 en
dc.identifier.spage 1241 en
dc.identifier.epage 1256 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής