dc.contributor.author |
Panayotounakos, DE |
en |
dc.contributor.author |
Younis, C |
en |
dc.date.accessioned |
2014-03-01T01:08:20Z |
|
dc.date.available |
2014-03-01T01:08:20Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
0045-7949 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10418 |
|
dc.subject |
Dynamic Analysis |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Equations of Motion |
en |
dc.subject.other |
Mathematical Techniques--Eigenvalues and Eigenfunctions |
en |
dc.subject.other |
Lagrange Equations of Motion |
en |
dc.subject.other |
Open Chain Systems |
en |
dc.subject.other |
Dynamics |
en |
dc.title |
Dynamic analysis of a multibody open-chain system |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0045-7949(91)90199-V |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0045-7949(91)90199-V |
en |
heal.language |
English |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
The free plane motion of a compound pendulum is studied using the Lagrange equations of motion. The specific compound pendulum consists of a main plane disk from which are suspended two chains, each of which is composed of m and n rigid plane disks, respectively. A nonlinear system of m + n + 1 ordinary differential equations (ODEs) with respect to the properly selected generalized coordinates, is obtained. For small-amplitude swing the above system becomes a linear differential system. The eigenvalues and eigenvectors constitute the eigenfrequencies and the modeshapes, respectively, of the free swing of the considered compound pendulum. Also, relations are extracted which ensure a unique swing with no relative rotation between any two disks. Finally, several numerical results are given. © 1991. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers and Structures |
en |
dc.identifier.doi |
10.1016/0045-7949(91)90199-V |
en |
dc.identifier.isi |
ISI:A1991FV99200002 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
583 |
en |
dc.identifier.epage |
595 |
en |