dc.contributor.author |
Tsinias, J |
en |
dc.date.accessioned |
2014-03-01T01:08:22Z |
|
dc.date.available |
2014-03-01T01:08:22Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
0363-0129 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10435 |
|
dc.subject |
CONTROL LYAPUNOV FUNCTIONS |
en |
dc.subject |
STATE FEEDBACK |
en |
dc.subject |
STABILIZABILITY |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
System Stability - Lyapunov Methods |
en |
dc.subject.other |
Lyapunov Functions |
en |
dc.subject.other |
Stabilizability |
en |
dc.subject.other |
State Feedback |
en |
dc.subject.other |
Control Systems, Nonlinear |
en |
dc.title |
Existence of control Lyapunov functions and applications to state feedback stabilizability of nonlinear systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1137/0329025 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1137/0329025 |
en |
heal.language |
English |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
The asymptotic and practical stabilization for the affine in the control nonlinear systems, which extends the results of Artstein, Sontag, and Tsinias is explored. Sufficient conditions for the existence of control Lyapunov functions are presented guaranteeing stabilization. The corresponding feedback laws are smooth, except possibly at the equilibrium of the system. |
en |
heal.publisher |
SIAM PUBLICATIONS |
en |
heal.journalName |
SIAM Journal on Control and Optimization |
en |
dc.identifier.doi |
10.1137/0329025 |
en |
dc.identifier.isi |
ISI:A1991EZ35100012 |
en |
dc.identifier.volume |
29 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
457 |
en |
dc.identifier.epage |
473 |
en |