dc.contributor.author |
COTTIS, PG |
en |
dc.contributor.author |
UZUNOGLU, NK |
en |
dc.date.accessioned |
2014-03-01T01:08:24Z |
|
dc.date.available |
2014-03-01T01:08:24Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
0740-3232 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10464 |
|
dc.subject |
Integral Equation |
en |
dc.subject.classification |
Optics |
en |
dc.subject.other |
DIELECTRIC WAVE-GUIDES |
en |
dc.subject.other |
FORMULATION |
en |
dc.title |
INTEGRAL-EQUATION APPROACH FOR THE ANALYSIS OF ANISOTROPIC CHANNEL WAVE-GUIDES |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1364/JOSAA.8.000608 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1364/JOSAA.8.000608 |
en |
heal.language |
English |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
A general technique is presented for treating propagation in anisotropic channel waveguides. The proposed method is based on the use of Green's function theory in conjunction with integral-equation techniques. The unknown mode propagation constants are determined by solving a homogeneous integral equation on the cross-sectional area of the channel waveguide. The method of moments is employed in order to transform this integral equation into a homogeneous linear set of equations. The propagation constant is determined by truncating this set and setting its determinant equal to zero. The validity of the numerical procedure is examined, and several characteristic cases are presented. |
en |
heal.publisher |
OPTICAL SOC AMER |
en |
heal.journalName |
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION |
en |
dc.identifier.doi |
10.1364/JOSAA.8.000608 |
en |
dc.identifier.isi |
ISI:A1991FE97100002 |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
608 |
en |
dc.identifier.epage |
614 |
en |