dc.contributor.author |
WATANABE, K |
en |
dc.contributor.author |
FUKUDA, T |
en |
dc.contributor.author |
TZAFESTAS, SG |
en |
dc.date.accessioned |
2014-03-01T01:08:25Z |
|
dc.date.available |
2014-03-01T01:08:25Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
0020-7721 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10475 |
|
dc.subject |
extended kalman filter |
en |
dc.subject |
Learning Algorithm |
en |
dc.subject |
Neural Network |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.title |
LEARNING ALGORITHMS OF LAYERED NEURAL NETWORKS VIA EXTENDED KALMAN FILTERS |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/00207729108910654 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/00207729108910654 |
en |
heal.language |
English |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
Learning algorithms are described for layered feedforward type neural networks, in which a unit generates a real-valued output through a logistic function. The problem of adjusting the weights of internal hidden units can be regarded as a problem of estimating (or identifying) constant parametes with a non-linear observation equation. The present algorithm based on the extended Kalman filter has just the time-varying learning rate, while the well-known back-propagation (or generalized delta rule) algorithm based on gradient descent has a constant learning rate. From some simulation examples it is shown that when a sufficiently trained network is desired, the learning speed of the proposed algorithm is faster than that of the traditional back-propagation algorithm. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE |
en |
dc.identifier.doi |
10.1080/00207729108910654 |
en |
dc.identifier.isi |
ISI:A1991FC61500012 |
en |
dc.identifier.volume |
22 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
753 |
en |
dc.identifier.epage |
768 |
en |