HEAL DSpace

LEARNING ALGORITHMS OF LAYERED NEURAL NETWORKS VIA EXTENDED KALMAN FILTERS

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author WATANABE, K en
dc.contributor.author FUKUDA, T en
dc.contributor.author TZAFESTAS, SG en
dc.date.accessioned 2014-03-01T01:08:25Z
dc.date.available 2014-03-01T01:08:25Z
dc.date.issued 1991 en
dc.identifier.issn 0020-7721 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10475
dc.subject extended kalman filter en
dc.subject Learning Algorithm en
dc.subject Neural Network en
dc.subject.classification Automation & Control Systems en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Operations Research & Management Science en
dc.title LEARNING ALGORITHMS OF LAYERED NEURAL NETWORKS VIA EXTENDED KALMAN FILTERS en
heal.type journalArticle en
heal.identifier.primary 10.1080/00207729108910654 en
heal.identifier.secondary http://dx.doi.org/10.1080/00207729108910654 en
heal.language English en
heal.publicationDate 1991 en
heal.abstract Learning algorithms are described for layered feedforward type neural networks, in which a unit generates a real-valued output through a logistic function. The problem of adjusting the weights of internal hidden units can be regarded as a problem of estimating (or identifying) constant parametes with a non-linear observation equation. The present algorithm based on the extended Kalman filter has just the time-varying learning rate, while the well-known back-propagation (or generalized delta rule) algorithm based on gradient descent has a constant learning rate. From some simulation examples it is shown that when a sufficiently trained network is desired, the learning speed of the proposed algorithm is faster than that of the traditional back-propagation algorithm. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE en
dc.identifier.doi 10.1080/00207729108910654 en
dc.identifier.isi ISI:A1991FC61500012 en
dc.identifier.volume 22 en
dc.identifier.issue 4 en
dc.identifier.spage 753 en
dc.identifier.epage 768 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής