dc.contributor.author |
Mouzakis, FN |
en |
dc.contributor.author |
Bergeles, GC |
en |
dc.date.accessioned |
2014-03-01T01:08:27Z |
|
dc.date.available |
2014-03-01T01:08:27Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
0271-2091 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10500 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0026416499&partnerID=40&md5=67d4a89c1ce2e5708bb38390fae90add |
en |
dc.subject |
FINITE DIFFERENCE METHOD |
en |
dc.subject |
TURBULENT RECIRCULATING FLOW |
en |
dc.subject |
CURVILINEAR ORTHOGONAL COORDINATE SYSTEM |
en |
dc.subject |
HYBRID UPWIND DIFFERENCING SCHEME |
en |
dc.subject |
TURBULENCE MODEL |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.other |
Aerodynamics--Turbulent |
en |
dc.subject.other |
Atmospheric Turbulence |
en |
dc.subject.other |
Flow of Water--Turbulent |
en |
dc.subject.other |
Mathematical Models |
en |
dc.subject.other |
Mathematical Techniques--Finite Difference Method |
en |
dc.subject.other |
Flow Over a Ridge |
en |
dc.subject.other |
Hybrid Upwind Differencing Schemes |
en |
dc.subject.other |
Turbulence Models |
en |
dc.subject.other |
Turbulent Recirculating Flow |
en |
dc.subject.other |
Flow of Fluids |
en |
dc.subject.other |
Complex Terrain |
en |
dc.subject.other |
Modelling-Mathematical |
en |
dc.subject.other |
Recirculation |
en |
dc.subject.other |
Turbulent Flow |
en |
dc.title |
Numerical prediction of turbulent flow over a two-dimensional ridge |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
Predictions are presented of the two-dimensional turbulent flow over a triangular ridge. The time-averaged Reynolds equations are written in an orthogonal curvilinear co-ordinate system and transformed to finite difference form after discretization in physical space. Turbulence is simulated by the two-equation k-epsilon model of turbulence. In the first part of the paper the basics of the numerical method are presented and in the second part comparisons are made between predictions and available laboratory data. Therefore the validity and reliability of the method as well as its flexibility in treating complex recirculating flows are assessed. Results of engineering significance are presented of the effect of the ridge slope on the length of the recirculation region and on the overspeed factor on top of the ridge. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal for Numerical Methods in Fluids |
en |
dc.identifier.isi |
ISI:A1991EW88100005 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
287 |
en |
dc.identifier.epage |
296 |
en |