dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:08:27Z |
|
dc.date.available |
2014-03-01T01:08:27Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
0022247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10505 |
|
dc.subject |
Control Problem |
en |
dc.subject |
Optimal Solution |
en |
dc.title |
On the dependence of the solutions and optimal solutions of control problems on the control constraint set |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0022-247X(91)90247-W |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0022-247X(91)90247-W |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
In this paper we examine the dependence of the solutions and optimal solutions of a class of linear, infinite-dimensional control systems on the control constraint set. This is done using the weak and the Kuratowski-Mosco convergence of sets. First we establish some general facts about weakly convergent multifunctions. Then we prove some convergence theorems for the trajectories of certain control systems. We also derive a general relaxation theorem. Subsequently we pass to optimal control problems and prove various convergence results. We conclude with an example from parabolic control systems. © 1991. |
en |
heal.journalName |
Journal of Mathematical Analysis and Applications |
en |
dc.identifier.doi |
10.1016/0022-247X(91)90247-W |
en |
dc.identifier.volume |
158 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
427 |
en |
dc.identifier.epage |
447 |
en |