dc.contributor.author |
Tsinias, J |
en |
dc.date.accessioned |
2014-03-01T01:08:29Z |
|
dc.date.available |
2014-03-01T01:08:29Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
0167-6911 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10523 |
|
dc.subject |
Hermes controllability condition |
en |
dc.subject |
Planar systems |
en |
dc.subject |
practical stabilization |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
Mathematical Techniques - Polynomials |
en |
dc.subject.other |
System Stability |
en |
dc.subject.other |
Hermes Controllability Condition |
en |
dc.subject.other |
Planar Nonlinear Systems |
en |
dc.subject.other |
Practical Stabilization |
en |
dc.subject.other |
Control Systems, Nonlinear |
en |
dc.title |
Planar nonlinear systems: Practical stabilization and Hermes controllability condition |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0167-6911(91)90144-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0167-6911(91)90144-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
We analyze further some results from our recent work (1991) concerning the practical stabilizability problem by means of smooth feedback laws. These results are used to establish that if a smooth planar nonlinear system satisfies the Hermes controllability condition at its equilibrium, then it can be practically stabilized. © 1991. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Systems and Control Letters |
en |
dc.identifier.doi |
10.1016/0167-6911(91)90144-4 |
en |
dc.identifier.isi |
ISI:A1991GL58900006 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
291 |
en |
dc.identifier.epage |
296 |
en |