HEAL DSpace

Polynomial bounds for the linear prediction coefficients

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papaodysseus, C en
dc.contributor.author Koukoutsis, E en
dc.contributor.author Carayannis, G en
dc.date.accessioned 2014-03-01T01:08:29Z
dc.date.available 2014-03-01T01:08:29Z
dc.date.issued 1991 en
dc.identifier.issn 0165-1684 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10528
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0026257747&partnerID=40&md5=7e5d19d1f1be04219c6b00000957b647 en
dc.subject autocorrelation coefficients en
dc.subject forward linear prediction, Toeplitz matrices en
dc.subject ill-conditioning en
dc.subject Linear prediction en
dc.subject linear predictors en
dc.subject numerical behaviour en
dc.subject PARCORs en
dc.subject positive definiteness en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Signal Filtering and Prediction en
dc.subject.other Signal Processing--Analysis en
dc.subject.other Autocorrelation en
dc.subject.other Linear prediction en
dc.subject.other Polynomials bounds en
dc.subject.other Mathematical Techniques en
dc.title Polynomial bounds for the linear prediction coefficients en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1991 en
heal.abstract The purpose of this paper is to introduce a new methodology for the study of the numerical behaviour of the Toeplitz system and the quantities involved in the linear prediction problem. For this reason, first, it is proved that the positive definiteness of the system matrix is equivalent to a set of constraints on the autocorrelation innovation, for which new explicit recursive formulae are given. Next, through these formulae, the minimum bounds of the absolute values of the linear prediction coefficients are computed, which are of the order of P(p/2). However, it is proved that, by imposing proper restrictions on the autocorrelation values, a linear or a polynomial bound of a desired order for the LP coefficients can be obtained. Finally, using the previous analysis, the ill-conditioning of the Toeplitz system and the sensitivity of the determinants of the corresponding matrices are discussed. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Signal Processing en
dc.identifier.isi ISI:A1991GT61100008 en
dc.identifier.volume 25 en
dc.identifier.issue 2 en
dc.identifier.spage 215 en
dc.identifier.epage 226 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής