dc.contributor.author |
Stavropoulos, CN |
en |
dc.contributor.author |
Sykas, ED |
en |
dc.date.accessioned |
2014-03-01T01:08:31Z |
|
dc.date.available |
2014-03-01T01:08:31Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
0013-5194 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10540 |
|
dc.subject |
CHANNEL CAPACITY |
en |
dc.subject |
OPTIMIZATION |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Optimization--Applications |
en |
dc.subject.other |
Capacity Allocation |
en |
dc.subject.other |
Erlang Loss Model |
en |
dc.subject.other |
Nonzero Probability |
en |
dc.subject.other |
Optimal Resource Sharing Policy |
en |
dc.subject.other |
Optimally Scheduled System |
en |
dc.subject.other |
Information Theory |
en |
dc.title |
Property of optimal resource sharing policy in systems with N types of competing customer |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1049/el:19910854 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1049/el:19910854 |
en |
heal.language |
English |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
The problem of capacity allocation to a number of different types of customer is considered. The model is an N-dimensional generalisation of the Erlang loss model. Assuming infinite population for each type of customer, the problem is to improve the system performance which is measured as loss probability. A structural property of the optimal policy is derived. It follows that the optimally scheduled system will have, with nonzero probability, to use all its capacity. |
en |
heal.publisher |
IEE-INST ELEC ENG |
en |
heal.journalName |
Electronics Letters |
en |
dc.identifier.doi |
10.1049/el:19910854 |
en |
dc.identifier.isi |
ISI:A1991FY69700029 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
15 |
en |
dc.identifier.spage |
1356 |
en |
dc.identifier.epage |
1358 |
en |