dc.contributor.author |
KRAVVARITIS, D |
en |
dc.date.accessioned |
2014-03-01T01:08:31Z |
|
dc.date.available |
2014-03-01T01:08:31Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
0002-9939 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10544 |
|
dc.subject |
M-DISSIPATIVE |
en |
dc.subject |
MILD SOLUTION |
en |
dc.subject |
MEASURABLE MULTIFUNCTION |
en |
dc.subject |
SEMIGROUP OF CONTRACTIONS |
en |
dc.subject |
RANDOM EQUATIONS |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
RANDOM SEMILINEAR EVOLUTION-EQUATIONS IN BANACH-SPACES |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1090/S0002-9939-1991-1056680-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1090/S0002-9939-1991-1056680-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
In this paper we prove the existence of mild solutions for random, semilinear evolution equations involving a random, linear, unbounded m-dissipative operator and a random single valued or multivalued perturbation. Finally, an application to a random semilinear partial differential equation is given. |
en |
heal.publisher |
AMER MATHEMATICAL SOC |
en |
heal.journalName |
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY |
en |
dc.identifier.doi |
10.1090/S0002-9939-1991-1056680-8 |
en |
dc.identifier.isi |
ISI:A1991GN94300015 |
en |
dc.identifier.volume |
113 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
715 |
en |
dc.identifier.epage |
722 |
en |