HEAL DSpace

Some new instability aspects for nonconservative systems under follower loads

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kounadis, AN en
dc.date.accessioned 2014-03-01T01:08:33Z
dc.date.available 2014-03-01T01:08:33Z
dc.date.issued 1991 en
dc.identifier.issn 0020-7403 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10561
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0025808477&partnerID=40&md5=9a0e4aa8f8812a291351ed1f08a72491 en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Computers--Applications en
dc.subject.other Mathematical Models en
dc.subject.other Stresses--Analysis en
dc.subject.other Structural Analysis--Dynamic Response en
dc.subject.other Vibrations--Damping en
dc.subject.other Autonomous Non-Dissipative Structural Systems en
dc.subject.other Flutter Instability en
dc.subject.other Follower Loads en
dc.subject.other Nonconservative Systems en
dc.subject.other Nonlinear Dynamic Analysis en
dc.subject.other Pre-critical Deformation en
dc.subject.other Mechanisms en
dc.title Some new instability aspects for nonconservative systems under follower loads en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1991 en
heal.abstract The mechanism of instability of nonlinear nonconservative discrete systems under follower loads with or without pre-critical deformation is thoroughly re-examined with the aid of a complete nonlinear dynamic analysis. Considering the stability of motion in the large, in the sense of Lagrange, the critical (divergence or dynamic) load is defined as the minimum load for which an unbounded (divergent) motion is initiated. Regions which have been considered (on the basis of linearized analyses) as of flutter instability are found (using a nonlinear dynamic analysis) dynamically stable. Some new instability phenomena contradict existing findings which have been widely accepted. Moreover, it is established that the divergence buckling loads, obtained by static methods of analysis, coincide with the nonlinear dynamic loads only in the case of no pre-critical deformation. Cases of random-like (or chaotic-like) motions for certain values of the nonconservativeness loading parameter are also revealed for autonomous non-dissipative structural systems. © 1991. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Mechanical Sciences en
dc.identifier.isi ISI:A1991FL96100004 en
dc.identifier.volume 33 en
dc.identifier.issue 4 en
dc.identifier.spage 297 en
dc.identifier.epage 311 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής