dc.contributor.author |
Koukoutsis, Elias |
en |
dc.contributor.author |
Carayannis, George |
en |
dc.contributor.author |
Halkias Cristos, C |
en |
dc.date.accessioned |
2014-03-01T01:08:33Z |
|
dc.date.available |
2014-03-01T01:08:33Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
1053-587X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10572 |
|
dc.subject |
Digital Signal Processing |
en |
dc.subject |
Fir Filter |
en |
dc.subject |
Linear Predictive |
en |
dc.subject |
Parallel Algorithm |
en |
dc.subject |
Recursive Algorithm |
en |
dc.subject |
superlattices |
en |
dc.subject |
Processing Element |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Computer Systems, Digital - Multiprocessing |
en |
dc.subject.other |
Mathematical Techniques - Least Squares Approximations |
en |
dc.subject.other |
Mathematical Techniques - Matrix Algebra |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Signal Processing - Digital Techniques |
en |
dc.subject.other |
Linear Prediction |
en |
dc.subject.other |
Optimal FIR Filtering |
en |
dc.subject.other |
Partitioed-Parallel Algorithms |
en |
dc.subject.other |
Superlattice/Superladder Computations |
en |
dc.subject.other |
Toeplitz Systems Solution |
en |
dc.subject.other |
Signal Filtering and Prediction |
en |
dc.title |
Superlattice/superladder computational organization for linear prediction and optimal FIR filtering |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/78.91177 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/78.91177 |
en |
heal.language |
English |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
A family of new computational organizations for the solution of the Toeplitz systems appearing in the digital signal processing (DSP) techniques of linear prediction and optimal FIR filtering is presented in this paper. All these organizations are based on a structure called superlattice which governs the Toeplitz solving procedure and provides a multitude of possible implementations. Algorithmic schemes for the implementation of these organizations, suitable both for single-processor and multiprocessor environments, are developed. Among them are order recursive algorithms, parallel algorithms of O(p) complexity which use O(p) processing elements, and partitioned-parallel algorithms. The last can make full use of any number of available, parallelly working processors, independently of the system order. Superlattice-type algorithms are described for many Toeplitz-based problems, i.e., the computation of the lattice and ladder coefficients, the calculation of a linear predictor from the lattice coefficients, the calculation of an LS FIR filter from the lattice-ladder coefficients, the triangularization of a Toeplitz matrix, and the l-step ahead prediction problem. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Signal Processing |
en |
dc.identifier.doi |
10.1109/78.91177 |
en |
dc.identifier.isi |
ISI:A1991GG77000006 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
2199 |
en |
dc.identifier.epage |
2215 |
en |