HEAL DSpace

The eigenproblem formulation for HMM

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Touratzidis, L en
dc.contributor.author Dologlou, I en
dc.contributor.author Carayannis, G en
dc.date.accessioned 2014-03-01T01:08:35Z
dc.date.available 2014-03-01T01:08:35Z
dc.date.issued 1991 en
dc.identifier.issn 0167-6393 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10583
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0026260238&partnerID=40&md5=9f8efb2a2aa8c6ba68195d5cf323a1eb en
dc.subject Hidden Markov model en
dc.subject speech recognition en
dc.subject.classification Acoustics en
dc.subject.classification Communication en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Language & Linguistics en
dc.subject.other Mathematical Techniques--Algorithms en
dc.subject.other Mathematical Techniques--Matrix Algebra en
dc.subject.other Eigenproblem Formulation en
dc.subject.other Hidden Markov Models (HMM) en
dc.subject.other Symbol/State Probabilities en
dc.subject.other Transition Matrix en
dc.subject.other Speech en
dc.title The eigenproblem formulation for HMM en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1991 en
heal.abstract This paper presents a new matrix formulation of the basic concepts governing discrete Hidden Markov Models (HMM). Using this formulation, we show that symbol and state probabilities are exponential functions of the transition matrix of the model. Furthermore, based on the eigenanalysis of the transition matrix, a closed form relationship is derived between the eigenvalues of this matrix and the symbol probabilities at different instants. The matrix formulation provides a useful tool for the physical interpretation of the learning and decision process through HMM. A better insight is obtained, and tools are also given for a design with improved learning characteristics. © 1991. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Speech Communication en
dc.identifier.isi ISI:A1991GW01900004 en
dc.identifier.volume 10 en
dc.identifier.issue 4 en
dc.identifier.spage 373 en
dc.identifier.epage 380 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής