dc.contributor.author |
Papadrakakis, M |
en |
dc.contributor.author |
Theoharis, AP |
en |
dc.date.accessioned |
2014-03-01T01:08:35Z |
|
dc.date.available |
2014-03-01T01:08:35Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
0045-7825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10590 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0026191543&partnerID=40&md5=18865a42c1ea40c4bd0303ca82158a9d |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Computer Programming - Algorithms |
en |
dc.subject.other |
Mathematical Techniques - Iterative Methods |
en |
dc.subject.other |
Conjugate-Newton Methods |
en |
dc.subject.other |
Factorization |
en |
dc.subject.other |
Post-Limit-Point Path Tracing |
en |
dc.subject.other |
Stiffness Matrix |
en |
dc.subject.other |
Structural Design |
en |
dc.title |
Tracing post-limit-point paths with incomplete or without factorization of the stiffness matrix |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
In this work nonlinear versions of preconditioned conjugate gradient-like methods have been employed in conjunction with a work control constraint in order to trace the complete load-displacement path beyond limit points. The so called conjugate and secant-Newton methods combine the convergence properties of Newton-like methods and the low storage requirements of vector iteration methods by varying the storage demands for the preconditioning matrix according to the available computer storage facilities. Special care has to be taken in the line search routine which is indispensable for any nonlinear version of a conjugate gradient-like method. The constraint formulation of the methods is properly modified to incorporate the line search, while a special implementation is proposed for the unstable branches of the load-displacement curves where the corresponding stationary point of the total potential energy is a saddle point. |
en |
heal.publisher |
ELSEVIER SCIENCE SA LAUSANNE |
en |
heal.journalName |
Computer Methods in Applied Mechanics and Engineering |
en |
dc.identifier.isi |
ISI:A1991FV93000002 |
en |
dc.identifier.volume |
88 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
165 |
en |
dc.identifier.epage |
187 |
en |