dc.contributor.author |
Kanarachos, AE |
en |
dc.contributor.author |
Spentzas, CN |
en |
dc.date.accessioned |
2014-03-01T01:08:37Z |
|
dc.date.available |
2014-03-01T01:08:37Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0094-114X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10607 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0026953507&partnerID=40&md5=e5e605879c41bdf2f27d4d18b89fc63a |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Equations of Motion |
en |
dc.subject.other |
Frequency Domain Analysis |
en |
dc.subject.other |
Iterative Methods |
en |
dc.subject.other |
System Stability |
en |
dc.subject.other |
Galerkin Method |
en |
dc.subject.other |
Harmonically Excited Nonlinear Systems |
en |
dc.subject.other |
Powell's Minimization Method |
en |
dc.subject.other |
Steady State Analysis |
en |
dc.subject.other |
Nonlinear Control Systems |
en |
dc.title |
A Galerkin method for the steady state analysis of harmonically excited non-linear systems |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
A Galerkin method for the computation of the steady state of harmonically excited non-linear systems in the frequency domain is presented. The non-linear differential equations of motion are transformed, via the Galerkin technique, to a minimized system of non-linear algebraic equations in the frequency domain. These equations are then solved by a specially developed iteration procedure based on Powell's minimization method. The solution technique proves to be suitable for non-linear systems with arbitrary and numerous non-linearities (e.g. joints with clearance, non-linear springs and dampers). © 1992. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Mechanism and Machine Theory |
en |
dc.identifier.isi |
ISI:A1992JH51100003 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
661 |
en |
dc.identifier.epage |
671 |
en |