dc.contributor.author |
Tsinias, J |
en |
dc.date.accessioned |
2014-03-01T01:08:37Z |
|
dc.date.available |
2014-03-01T01:08:37Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0167-6911 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10608 |
|
dc.subject |
control functions |
en |
dc.subject |
interconnected systems |
en |
dc.subject |
Stabilizability |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
Mathematical Techniques - Conformal Mapping |
en |
dc.subject.other |
System Stability - Mathematical Models |
en |
dc.subject.other |
Continuous Feedback |
en |
dc.subject.other |
Feedback Law |
en |
dc.subject.other |
Interconnected Systems |
en |
dc.subject.other |
Locally Asymptotically Stabilizable |
en |
dc.subject.other |
Control Systems, Nonlinear |
en |
dc.title |
A local stabilization theorem for interconnected systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0167-6911(92)90046-U |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0167-6911(92)90046-U |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
We prove that if a nonlinear control system is locally asymptotically stabilizable at its equilibrium by means of a continuous feedback, then adding an integrator the resulting system is also locally asymptotically stabilizable by means of a feedback law, which is smooth except possibly at the equilibrium. Our approach is based on previous works of Arstein, Sontag and the author. © 1992. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Systems and Control Letters |
en |
dc.identifier.doi |
10.1016/0167-6911(92)90046-U |
en |
dc.identifier.isi |
ISI:A1992JA30800003 |
en |
dc.identifier.volume |
18 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
429 |
en |
dc.identifier.epage |
434 |
en |