HEAL DSpace

A NONLINEAR DISAGGREGATION METHOD WITH A REDUCED PARAMETER SET FOR SIMULATION OF HYDROLOGIC SERIES

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author KOUTSOYIANNIS, D en
dc.date.accessioned 2014-03-01T01:08:38Z
dc.date.available 2014-03-01T01:08:38Z
dc.date.issued 1992 en
dc.identifier.issn 0043-1397 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10616
dc.subject Seasonality en
dc.subject Second Order Statistics en
dc.subject Stochastic Simulation en
dc.subject Markov Model en
dc.subject.classification Environmental Sciences en
dc.subject.classification Limnology en
dc.subject.classification Water Resources en
dc.subject.other LOG NORMAL-DISTRIBUTIONS en
dc.subject.other MODELS en
dc.title A NONLINEAR DISAGGREGATION METHOD WITH A REDUCED PARAMETER SET FOR SIMULATION OF HYDROLOGIC SERIES en
heal.type journalArticle en
heal.identifier.primary 10.1029/92WR01299 en
heal.identifier.secondary http://dx.doi.org/10.1029/92WR01299 en
heal.language English en
heal.publicationDate 1992 en
heal.abstract A multivariate dynamic disaggregation model is developed as a stepwise approach to stochastic disaggregation problems, oriented toward hydrologic applications. The general idea of the approach is the conversion of a sequential stochastic simulation model, such as a seasonal AR(1), into a disaggregation model. Its structure includes two separate parts, a linear step-by-step moments determination procedure, based on the associated sequential model, and an independent nonlinear bivariate generation procedure (partition procedure). The model assures the preservation of the additive property of the actual (not transformed) variables. Its modular structure allows for various model configurations. Two different configurations (PAR(1) and PARX(1)), both associated with the sequential Markov model, are studied. Like the sequential Markov model, both configurations utilize the minimum set of second-order statistics and the marginal means and third moments of the lower-level variables. All these statistics are approximated by the model with the use of explicit relations. Both configurations perform well with regard to the correlation of consecutive lower-level variables each located in consecutive higher-level time steps. The PARX(1) configuration exhibits better behavior with regard to the correlation properties of lower-level variables with lagged higher-level variables. en
heal.publisher AMER GEOPHYSICAL UNION en
heal.journalName WATER RESOURCES RESEARCH en
dc.identifier.doi 10.1029/92WR01299 en
dc.identifier.isi ISI:A1992KD06700010 en
dc.identifier.volume 28 en
dc.identifier.issue 12 en
dc.identifier.spage 3175 en
dc.identifier.epage 3191 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής