dc.contributor.author |
Loret, B |
en |
dc.contributor.author |
Hammoum, F |
en |
dc.contributor.author |
Dafalias, YF |
en |
dc.date.accessioned |
2014-03-01T01:08:38Z |
|
dc.date.available |
2014-03-01T01:08:38Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0045-7825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10617 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0001645849&partnerID=40&md5=8e9454e926d2959e09a6a769f0ad7a35 |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
NUMERICAL-SOLUTIONS |
en |
dc.subject.other |
MODELS |
en |
dc.title |
A note on the accuracy of stress-point algorithms for anisotropic elastic-plastic solids |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
t is argued that, in order to be meaningful, an error analysis of stress-point algorithms for anisotropic elastic-plastic materials cannot be content to consider only those stress-increments that satisfy the rate plastic loading condition; it must also consider stress-increments that traverse the yield surface because they are observed to lead to the maximum errors, a point that has not been remarked so far. This requirement is illustrated for the Euler-backward and cutting plane algorithms applied to the orthotropic Hill's yield surface. In addition, the closed-form solution used in the error analysis is provided. © 1992. |
en |
heal.publisher |
ELSEVIER SCIENCE SA LAUSANNE |
en |
heal.journalName |
Computer Methods in Applied Mechanics and Engineering |
en |
dc.identifier.isi |
ISI:A1992JH26500005 |
en |
dc.identifier.volume |
98 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
399 |
en |
dc.identifier.epage |
409 |
en |