dc.contributor.author |
Frangos Panayiotis, V |
en |
dc.contributor.author |
Jaggard Dwight, L |
en |
dc.date.accessioned |
2014-03-01T01:08:39Z |
|
dc.date.available |
2014-03-01T01:08:39Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0018-926X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10638 |
|
dc.subject |
Analytical Method |
en |
dc.subject |
Differential Operators |
en |
dc.subject |
Integral Equation |
en |
dc.subject |
Inverse Scattering Problem |
en |
dc.subject |
Linear Differential Equation |
en |
dc.subject |
Numerical Method |
en |
dc.subject |
Numerical Solution |
en |
dc.subject |
Reflection Coefficient |
en |
dc.subject |
Transmission Line |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Telecommunications |
en |
dc.subject.other |
Electric Networks - Transmission Line Theory |
en |
dc.subject.other |
Mathematical Techniques - Integral Equations |
en |
dc.subject.other |
Differential Operators |
en |
dc.subject.other |
GLM Integral Equations |
en |
dc.subject.other |
Inverse Scattering Problem |
en |
dc.subject.other |
Nonuniform Transmission Line |
en |
dc.subject.other |
Electromagnetic Waves |
en |
dc.title |
Analytical and numerical solution to the two-potential Zakharov-Shabat inverse scattering problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/8.138841 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/8.138841 |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
An analytical and a numerical method are presented in order to solve the inverse scattering problem (ISP) associated with the two-potential Zakharov-Shabat (ZS) coupled mode equations. The numerical solution, which uses leapfrogging in space and time, represents a direct numerical solution to the coupled Gel'fand-Levitan-Marchenko (GLM) integral equations, as an extension of the authors' previous work on GLM equations of simpler form. The analytical method, which is applied here for one-pole reflection coefficients, consists in constructing appropriate differential operators which transform the coupled GLM equations to ordinary linear differential equations. Finally, an application of these methods for nonuniform transmission line synthesis is presented. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Antennas and Propagation |
en |
dc.identifier.doi |
10.1109/8.138841 |
en |
dc.identifier.isi |
ISI:A1992HW46100006 |
en |
dc.identifier.volume |
40 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
399 |
en |
dc.identifier.epage |
404 |
en |