dc.contributor.author |
Therapos Constantine, P |
en |
dc.date.accessioned |
2014-03-01T01:08:40Z |
|
dc.date.available |
2014-03-01T01:08:40Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0018-9286 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10647 |
|
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Control Systems--Design |
en |
dc.subject.other |
Mathematical Techniques--Transfer Functions |
en |
dc.subject.other |
Transfer Function Matrices |
en |
dc.subject.other |
Mathematical Techniques |
en |
dc.title |
Balance realization of stable transfer function matrices |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/9.121637 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/9.121637 |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
Simple formulas are presented to compute the internally balanced minimal realization and the singular decomposition of the Hankel operator of a given continuous-time p x m stable transfer function matrix E(s)/d(s). The proposed formulas involve the Schwarz numbers of d(s) and the singular eigenvalues-elgenmatrices of a suitable finite matrix. Similar results are also obtained for a given discrete-time transfer function matrix. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Automatic Control |
en |
dc.identifier.doi |
10.1109/9.121637 |
en |
dc.identifier.isi |
ISI:A1992HB66500021 |
en |
dc.identifier.volume |
37 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
281 |
en |
dc.identifier.epage |
285 |
en |