HEAL DSpace

CONTINUOUS DEPENDENCE RESULTS FOR A CLASS OF EVOLUTION INCLUSIONS

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author PAPAGEORGIOU, NS en
dc.date.accessioned 2014-03-01T01:08:45Z
dc.date.available 2014-03-01T01:08:45Z
dc.date.issued 1992 en
dc.identifier.issn 0013-0915 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10660
dc.subject Continuous Dependence en
dc.subject.classification Mathematics en
dc.subject.other DIFFERENTIAL-INCLUSIONS en
dc.subject.other BANACH-SPACES en
dc.subject.other EQUATIONS en
dc.subject.other STABILITY en
dc.subject.other CONVERGENCE en
dc.title CONTINUOUS DEPENDENCE RESULTS FOR A CLASS OF EVOLUTION INCLUSIONS en
heal.type journalArticle en
heal.identifier.primary 10.1017/S001309150000540X en
heal.identifier.secondary http://dx.doi.org/10.1017/S001309150000540X en
heal.language English en
heal.publicationDate 1992 en
heal.abstract In this paper we examine the dependence of the solutions of an evolution inclusion on a parameter-lambda. We prove two dependence theorems. In the first the parameter appears only in the orientor field and we show that the solution set depends continuously on it for both the Vietoris and Hausdorff topologies. In the second the parameter appears also in the monotone operator. Using the notion of G-convergence of operators we prove that the solution set is upper semicontinuous with respect to the parameter. Both results make use of a general existence theorem which we also prove in this paper. Finally, we present two examples. One from control theory and the other from partial differential inclusions. en
heal.publisher OXFORD UNIV PRESS UNITED KINGDOM en
heal.journalName PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY en
dc.identifier.doi 10.1017/S001309150000540X en
dc.identifier.isi ISI:A1992HF41200012 en
dc.identifier.volume 35 en
dc.identifier.spage 139 en
dc.identifier.epage 158 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής