dc.contributor.author |
Ioakimidis, NI |
en |
dc.contributor.author |
Anastasselos, GT |
en |
dc.date.accessioned |
2014-03-01T01:08:46Z |
|
dc.date.available |
2014-03-01T01:08:46Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0045-7949 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10673 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0026938227&partnerID=40&md5=265855ae96d57ec887ce95dd5312427f |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Algebra |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Chebyshev approximation |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Computer applications |
en |
dc.subject.other |
Computer software |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Stresses |
en |
dc.subject.other |
Collinear cracks |
en |
dc.subject.other |
Computer algebra systems (CAS) |
en |
dc.subject.other |
Lobatto Chebyshev method |
en |
dc.subject.other |
Semianalytical/numerical (SAN) environment |
en |
dc.subject.other |
Singular integral equations (SIEs) |
en |
dc.subject.other |
Taylor Maclaurin series |
en |
dc.subject.other |
Integral equations |
en |
dc.title |
Direct Taylor-series solution of singular integral equations with MAPLE |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
Cauchy-type singular integral equations (SIEs) frequently appear in a variety of elasticity problems and, most often, in crack problems. Here we extend the classical direct numerical methods for the approximate solution of these equations to the semi-analytical/numerical (SAN) environment offered by modern computer algebra systems (CAS). The idea is simply to use Taylor-Maclaurin series in the approximate SAN solution and to reduce the problem to a purely numerical set of systems of linear equations. The approach is illustrated in the classical Lobatto-Chebyshev method with an application to the problem of a periodic array of collinear cracks. Extensive displayed SAN results for the stress intensity factors show the convergence and efficiency of the proposed SAN approach. The cases of other direct methods for SIEs are also directly applicable. © 1992. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers and Structures |
en |
dc.identifier.isi |
ISI:A1992JZ84500020 |
en |
dc.identifier.volume |
45 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
613 |
en |
dc.identifier.epage |
617 |
en |