dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:08:48Z |
|
dc.date.available |
2014-03-01T01:08:48Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0895-7177 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10699 |
|
dc.subject |
Economic Growth |
en |
dc.subject |
Optimal Path |
en |
dc.subject |
Sensitivity Analysis |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
SYSTEMS |
en |
dc.title |
Existence and sensitivity analysis of optimal paths in an economic growth model with infinite planning horizon |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0895-7177(92)90057-R |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0895-7177(92)90057-R |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
In this paper, we examine a model of optimal economic growth with infinite continuous time planning horizon, convex technology and an aggregate discounted utility. First, we establish the existence of optimal capital accumulation paths, and then we study their variations as well as those of the optimal value as we perturb the data of the model. Our tools are taken from the theory of weighted Sobolev spaces, from the Kuratowski-Mosco convergence of sets and the corresponding hypographical convergence of concave functions. © 1992. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Mathematical and Computer Modelling |
en |
dc.identifier.doi |
10.1016/0895-7177(92)90057-R |
en |
dc.identifier.isi |
ISI:A1992JR03100003 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
17 |
en |
dc.identifier.epage |
23 |
en |