dc.contributor.author |
MASTORAKIS, NE |
en |
dc.contributor.author |
THEODOROU, NJ |
en |
dc.contributor.author |
TZAFESTAS, SG |
en |
dc.date.accessioned |
2014-03-01T01:08:48Z |
|
dc.date.available |
2014-03-01T01:08:48Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0020-7721 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10700 |
|
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
STATE-SPACE |
en |
dc.subject.other |
SYSTEMS |
en |
dc.title |
FACTORIZATION OF M-D POLYNOMIALS IN LINEAR M-D FACTORS |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/00207729208949423 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/00207729208949423 |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
This paper presents a solution to the factorization problem of high-order m-D polynomials into special m-D factors that are linear in all variables. By special it is meant that the factors have the form of a sum of one independent variable, say z1, and a general first-order polynomial not involving z1, i.e. z1 + a(j)2z2 + ... + a(jm)z(m) (j = 1, 2,..., N1). Two theorems providing the necessary and sufficient conditions for this factorization are given, which have an algorithmic form and are thus appropriate for direct computer use. The results are illustrated by means of three examples. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE |
en |
dc.identifier.doi |
10.1080/00207729208949423 |
en |
dc.identifier.isi |
ISI:A1992KB36900002 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1805 |
en |
dc.identifier.epage |
1824 |
en |