HEAL DSpace

On the large postbuckling response of nonconservative continuous systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kandakis, G en
dc.contributor.author Kounadis, AN en
dc.date.accessioned 2014-03-01T01:08:53Z
dc.date.available 2014-03-01T01:08:53Z
dc.date.issued 1992 en
dc.identifier.issn 09391533 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10711
dc.subject Cantilever Beam en
dc.subject Continuous System en
dc.subject Critical Point en
dc.subject Eigenvalues en
dc.subject Elliptic Integral en
dc.subject Numerical Scheme en
dc.subject runge kutta en
dc.subject.other Beams and Girders - Buckling en
dc.subject.other Mathematical Techniques - Eigenvalues and Eigenfunctions en
dc.subject.other Mathematical Techniques - Integral Equations en
dc.subject.other Structural Analysis - Dynamic Response en
dc.subject.other Structural Analysis - Loads en
dc.subject.other Divergence Instability en
dc.subject.other Flutter Instability en
dc.subject.other Nonconservativeness Loading Parameter en
dc.subject.other Postbuckling Response en
dc.subject.other Uniform Cantilever Beam en
dc.subject.other Beams and Girders en
dc.title On the large postbuckling response of nonconservative continuous systems en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF00804985 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF00804985 en
heal.publicationDate 1992 en
heal.abstract The large postbuckling response of a uniform cantilever beam subjected to a partial follower compressive load of constant magnitude is presented. The range of values of the nonconservativeness loading parameter for which a divergence instability occurs is theoretically established. The boundary between divergence and flutter instability corresponds to a double critical point where the first and second buckling loads (eigenvalues) coincide. It was also theoretically established that the critical points corresponding to these loads are stable symmetric. Except of the double critical point, the buckling loads of the first and second eigenmodes are distinct for the entire region of the nonconservativeness loading parameter. However, this is not true for the corresponding postbuckling paths. Indeed using an elastica analysis suitable for rotations up to 360°, it was found that at a certain critical tip rotation depending on the value of the nonconservativeness parameter the first and second postbuckling modes meet each other asymptotically. Numerical results have been obtained using various approximate analytic techniques which are checked by the method of elliptic integrals as well as the numerical schemes of Adams and Runge-Kutta. © 1992 Springer-Verlag. en
heal.publisher Springer-Verlag en
heal.journalName Archive of Applied Mechanics en
dc.identifier.doi 10.1007/BF00804985 en
dc.identifier.volume 62 en
dc.identifier.issue 4 en
dc.identifier.spage 256 en
dc.identifier.epage 265 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής