dc.contributor.author |
Cornwall, JM |
en |
dc.contributor.author |
Tiktopoulos, G |
en |
dc.date.accessioned |
2014-03-01T01:08:53Z |
|
dc.date.available |
2014-03-01T01:08:53Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0556-2821 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10713 |
|
dc.subject.classification |
Astronomy & Astrophysics |
en |
dc.subject.classification |
Physics, Particles & Fields |
en |
dc.subject.other |
PERTURBATION-THEORY |
en |
dc.subject.other |
BARYON-NUMBER |
en |
dc.subject.other |
GAUGE THEORIES |
en |
dc.subject.other |
LARGE ORDER |
en |
dc.subject.other |
AMPLITUDES |
en |
dc.subject.other |
BREAKDOWN |
en |
dc.subject.other |
VIOLATION |
en |
dc.subject.other |
FREEDOM |
en |
dc.subject.other |
MODEL |
en |
dc.title |
High-energy multileg electroweak processes and unitarity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1103/PhysRevD.45.2105 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1103/PhysRevD.45.2105 |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
Because of the failure of the dilute-instanton-gas approximation (DIGA) at high energies, recent calculations of (B + L)-violating processes in the standard model show blatant violations of unitarity, and suggest that these processes may be relatively unsuppressed at multiplicities N approximately alpha(W)-1. We show how to cure the DIGA failure and restore the high-energy behavior necessary for consistency with unitarity in two ways: one in Minkowski space and the other in Euclidean space. In Euclidean space this is done by solving the classical field equations in the presence of space-time-dependent sources; we work out an explicit example. The same techniques allow us to investigate a similar failure of.high-energy behavior in perturbation theory [(B + L)-conserving processes] as studied with the DIGA in the manner of Lipatov. An independent Minkowski-space analysis, also dealing with classical solutions in the presence of sources, confirms these results and shows that even with the right high-energy behavior, factors growing rapidly with N when N greater-than-or-equal-to alpha(W)-1 still violate unitarity in the (B + L)-conserving sector. Within the framework of a simple model which automatically restores unitarity, we investigate whether dispersion integrals relating high- and low-energy (B + L)-violating processes can restrict the size of the high-energy B + L violation, and find that they cannot. |
en |
heal.publisher |
AMERICAN PHYSICAL SOC |
en |
heal.journalName |
Physical Review D |
en |
dc.identifier.doi |
10.1103/PhysRevD.45.2105 |
en |
dc.identifier.isi |
ISI:A1992HJ69100029 |
en |
dc.identifier.volume |
45 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
2105 |
en |
dc.identifier.epage |
2120 |
en |