dc.contributor.author |
Theotokoglou, EN |
en |
dc.date.accessioned |
2014-03-01T01:08:54Z |
|
dc.date.available |
2014-03-01T01:08:54Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0013-7944 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10719 |
|
dc.subject |
Integral Equation |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Disks--Rotating |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Fracture Mechanics--Stresses |
en |
dc.subject.other |
Mathematical Techniques--Integral Equations |
en |
dc.subject.other |
Elastic Disks |
en |
dc.subject.other |
Stress Intensity Factors |
en |
dc.subject.other |
Disks |
en |
dc.title |
Integral equation solution of the eccentrically rotating cracked finite elastic disc |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0013-7944(92)90190-P |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0013-7944(92)90190-P |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
The problem studied is of a massive finite disc rotating eccentrically and weakened by a crack. It is reduced to a singular integral equation for an arbitrary crack geometry in the disc. Appropriate numerical procedures are employed and accurate results for the stress intensity factors are reported for a range of the geometric parameters of the problem. © 1992. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Engineering Fracture Mechanics |
en |
dc.identifier.doi |
10.1016/0013-7944(92)90190-P |
en |
dc.identifier.isi |
ISI:A1992HB72200015 |
en |
dc.identifier.volume |
41 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
299 |
en |
dc.identifier.epage |
308 |
en |