HEAL DSpace

Local solution acceleration method for the Euler and Navier-Stokes equations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Drikakis, D en
dc.contributor.author Tsangaris, S en
dc.date.accessioned 2014-03-01T01:08:55Z
dc.date.available 2014-03-01T01:08:55Z
dc.date.issued 1992 en
dc.identifier.issn 0001-1452 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/10733
dc.subject navier-stokes equation en
dc.subject.classification Engineering, Aerospace en
dc.subject.other Aerodynamics - Wings and Airfoils en
dc.subject.other Computer Programming - Algorithms en
dc.subject.other Computer Software - Applications en
dc.subject.other Mathematical Techniques - Iterative Methods en
dc.subject.other Euler Equations en
dc.subject.other Gauss-Seidel Relaxation en
dc.subject.other Local Solution Acceleration Method en
dc.subject.other Monotone Upstream Centered Scheme for Conservation Laws (MUSCL) en
dc.subject.other Navier-Stokes Equations en
dc.subject.other Software Package MUSCL en
dc.subject.other Flow of Fluids en
dc.subject.other Euler Equations en
dc.subject.other Navier-Stokes Equations en
dc.subject.other Solution en
dc.title Local solution acceleration method for the Euler and Navier-Stokes equations en
heal.type journalArticle en
heal.identifier.primary 10.2514/3.10924 en
heal.identifier.secondary http://dx.doi.org/10.2514/3.10924 en
heal.language English en
heal.publicationDate 1992 en
heal.abstract The solution of the compressible Euler and Navier-Stokes equations via an upwind finite volume scheme is obtained. For the inviscid fluxes, the monotone upstream-centered scheme for conservation laws (MUSCL) has been incorporated into a Riemann solver. The MUSCL scheme is used for the unfactored implicit equations that are solved by a Newton form, and relaxation is performed via Gauss-Seidel relaxation technique. The solution on the fine grid is obtained by iterating first on a sequence of coarser grids and then interpolating the solution up to the next refined grid. Since the distribution of the numerical error is nonuniform, the local solution of the equations can be obtained in regions where the numerical errors are large. The construction of the partial meshes, in which the iterations will be continued, is determined by an adaptive procedure taking into account some convergence criteria. Reduction of the computational work units for two-dimensional problems is obtained via the local adaptive mesh solution which is expected to be more effective in three-dimensional complex flow computations. en
heal.publisher AMER INST AERONAUT ASTRONAUT en
heal.journalName AIAA journal en
dc.identifier.doi 10.2514/3.10924 en
dc.identifier.isi ISI:A1992HE96700009 en
dc.identifier.volume 30 en
dc.identifier.issue 2 en
dc.identifier.spage 340 en
dc.identifier.epage 348 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής