dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:08:55Z |
|
dc.date.available |
2014-03-01T01:08:55Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0253-4142 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10735 |
|
dc.subject |
Maximal monotone operator |
en |
dc.subject |
relaxation |
en |
dc.subject |
resolvent |
en |
dc.subject |
resolvent convergence topology |
en |
dc.subject |
selection theorem |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
RIGHT-HAND SIDE |
en |
dc.subject.other |
EQUATIONS |
en |
dc.title |
Maximal monotone differential inclusions with memory |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02837180 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02837180 |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
In this paper we study maximal monotone differential inclusions with memory. First we establish two existence theorems; one involving convex-valued orientor fields and the other nonconvex valued ones. Then we examine the dependence of the solution set on the data that determine it. Finally we prove a relaxation theorem. © 1992 Indian Academy of Sciences. |
en |
heal.publisher |
Springer India |
en |
heal.journalName |
Proceedings of the Indian Academy of Sciences - Mathematical Sciences |
en |
dc.identifier.doi |
10.1007/BF02837180 |
en |
dc.identifier.isi |
ISI:A1992HW01100007 |
en |
dc.identifier.volume |
102 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
59 |
en |
dc.identifier.epage |
71 |
en |