dc.contributor.author |
Kiranoudis, CT |
en |
dc.contributor.author |
Maroulis, ZB |
en |
dc.contributor.author |
Marinos-Kouris, D |
en |
dc.date.accessioned |
2014-03-01T01:08:56Z |
|
dc.date.available |
2014-03-01T01:08:56Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0737-3937 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/10740 |
|
dc.subject.classification |
Engineering, Chemical |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Food Products - Drying |
en |
dc.subject.other |
Heat Transfer - Mathematical Models |
en |
dc.subject.other |
Mass Transfer - Mathematical Models |
en |
dc.subject.other |
Mathematical Models - Evaluation |
en |
dc.subject.other |
Mathematical Models - Selection |
en |
dc.subject.other |
Air Drying |
en |
dc.subject.other |
Moisture Content |
en |
dc.subject.other |
Phenomenological Models |
en |
dc.subject.other |
Drying |
en |
dc.title |
Model selection in air drying of foods |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/07373939208916497 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/07373939208916497 |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
The purpose of this investigation is to compare various drying models with respect to (a) the accuracy in calculating the material moisture content and temperature versus time and (b) the computation time required. Mechanistic as well as phenomenological heat and mass transfer models are considered. The mechanistic models are formulated by considering different combinations of mechanisms between (1) moisture diffusion in the solid towards its external surface (2) vaporization and convective transfer of the vapor into the air stream (3) convective heat transfer from the air to the solid's surface (4) conductive heat transfer within the solid mass. The phenomenological model incorporates the drying constant while the mechanistic models incorporate the mass diffusivity, the mass transfer coefficient in the air boundary layer, the thermal conductivity, and the heat transfer coefficient in the air boundary layer. The proposed methodology is applied to experimental data of four vegetables, namely, potato, onion, carrot, and green pepper. The experiments involve three thickness levels, five temperatures, three water activities, and three air velocities. The results obtained concern (a) the standard deviations between experimental and calculated values of material moisture content and temperature, which, in combination with the computation time, are the necessary information for model selection for a special application, and (b) the model parameter estimates which are necessary to use the selected model. |
en |
heal.publisher |
MARCEL DEKKER INC |
en |
heal.journalName |
Drying Technology |
en |
dc.identifier.doi |
10.1080/07373939208916497 |
en |
dc.identifier.isi |
ISI:A1992JJ58700015 |
en |
dc.identifier.volume |
10 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
1097 |
en |
dc.identifier.epage |
1106 |
en |